Brief introduction of 875-66-1

875-66-1 Cinnolin-4-ol 255799, acinnoline compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.875-66-1,Cinnolin-4-ol,as a common compound, the synthetic route is as follows.

To a suspension of NaH (60% in mineral oil, 0.099 g, 2.46 mmol) in DMF (5 mL) was added cinnolin-4-ol (prepared from 2-aminoacetophenone according to the procedures described in U. S. Patent No. 4,620, 000), 0. 300 g, 2.05 mmol) in DMF (2 mL) dropwise. The reaction mixture was warmed at 40 C and stirred for 30 minutes. After cooling, N-phenyltrifluoromethanesulfonimide (0.880 g, 2.46 mmol) in DMF (2 mL) was added, and the reaction mixture was stirred at room temperature for 1 hour. 1-Boc piperazine (0.765 g, 4.11 mmol) was added to the mixture. The reaction was stirred at 80 C for 4 hours. After cooling, the mixture was partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc. The combined organic layers were washed with water, brine, dried and concentrated. The residue was purified by column chromatography (1: 1 to 1: 3 hexanes/EtOAc) to give 4- Cinnolin-4-yl-piperazine-l-carboxylic acid tert-butyl ester (0.246 g, 38%) as a yellow oil. 1H NMR (CDC13, 400 MHz) 8 8. 91 (s, 1H), 8. 47 (d, J= 8.4 Hz, 1H), 7.97 (d, J= 8. 4 Hz, 1H), 7.80 (t, J= 7.2 Hz, 1H), 7.69 (t, J= 7.2 Hz, 1H), 3.74 (m, 4H), 3. 34 (m, 4H), 1.51 (s, 9H). LCMS (APCI+) tnlz 315 [M+H]’ ; Rt = 2.14 minutes.

875-66-1 Cinnolin-4-ol 255799, acinnoline compound, is more and more widely used in various.

Reference£º
Patent; ARRAY BIOPHARMA INC.; WO2005/51304; (2005); A2;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

Simple exploration of 875-66-1

As the paragraph descriping shows that 875-66-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.875-66-1,Cinnolin-4-ol,as a common compound, the synthetic route is as follows.

Example 20: Synthesis of 1- [4- (5-FLUORO-2-METHOXYPHENYL)-2-HYDROXY-4-METHYL-2- TRIFLUOROMETHYLPENTYL]-LH-CINNOLIN-4-ONE To a suspension of 2- [2- (5-fluoro-2-methoxyphenyl)-2-methylpropyl]-2-trifluoromethyloxirane (216 mg) and cinnolin-4-ol (V. G. Chapoulaud et AL., Tetrahedron, 2000,56, pp. 5499-5507) (216 mg) in anhydrous ethanol (1.2 ML) was added sodium ethoxide (21 wt. % solution in ethanol, 276 PL). After heating at 85C for 16 hours, the reaction mixture was diluted with ethyl acetate, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by preparative TLC (eluted with 40% ethyl acetate-hexanes) to give the title compound as a pale yellow solid (26 mg), m. p. 122C-123C.

As the paragraph descriping shows that 875-66-1 is playing an increasingly important role.

Reference£º
Patent; BOEHRINGER INGELHEIM PHARMACEUTICALS, INC.; WO2004/63163; (2004); A1;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

 

Analyzing the synthesis route of 875-66-1

875-66-1 Cinnolin-4-ol 255799, acinnoline compound, is more and more widely used in various.

875-66-1, Cinnolin-4-ol is a cinnoline compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Cinnolin-4(1H)-one (5.0 g, 34.24 mol) was added to the K2CO3 ( 7.08 g, 51.36 mol) and 3- bromoprop-1-yne (3.11 mL, 41.09 mol) in ACN (20 mL) and the mixture stirred at 80 C for 4-8 h then reaction mixture was cool to rt. The mixture was concentrated, diluted with H2O (30 mL), and extracted with EtOAc (3 ¡Á 50 mL). The combined organic layers were dried (MgSO4), filtered and concentrated. Flash chromatography gave 4-(prop-2-yn-1-yloxy)cinnoline (13a). Synthesis of 4-(prop-2-yn-1-yloxy)cinnoline (4a). Yield (2.60 g, 65.5%). m.p. 100-110 C. Colourless solid.1H NMR (400 MHz, CDCl3) delta 8.34 (dd, J = 1.2, 1.2 Hz, 1H, Ar), 7.81-7.77 (m, 2H, Ar), 7.60 (d, J = 8.8 Hz, 1H, Ar), 7.46 (t, J = 8.0 Hz,1H, Ar), 5.14 (d, J = 2.4 Hz, 1H, -OCH2), 2.51 (t, J = 2.4 Hz, 1H, Alky). 13C NMR (100 MHz, CDCl3) delta 171.2, 140.6, 140.1, 134.0, 126.0, 125.2, 124.6, 115.1, 76.0, 75.7, 46.2. ESI-MS: m/z 185.27 [M+H]+. Anal. Calc. (C11H8N2O) C: 71.73; H: 4.38; N: 15.21. Found C: 71.80; H: 4.04; N: 15.28%.

875-66-1 Cinnolin-4-ol 255799, acinnoline compound, is more and more widely used in various.

Reference£º
Article; Boda, Sathish Kumar; Bommagani, Mohan Babu; Chitneni, Prasad Rao; Mokenapelli, Sudhakar; Yerrabelli, Jayaprakash Rao; Synthetic Communications; (2020);,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

 

Downstream synthetic route of 875-66-1

The synthetic route of 875-66-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.875-66-1,Cinnolin-4-ol,as a common compound, the synthetic route is as follows.

(0509) Compound 110 (292 mg, 2.00 mmol) was refluxed in POCl3 overnight. It was cooled to room temperature and poured into ice water, neutralized with Na2C03. The precipitation was filtered out and washed with water, dried by pulling air through. Product was obtained as light yellow solid. (0510) (243mg, 74%). 1H NMR (400 MHz, chloroform-i/) delta 9.35 (s, 1H), 8.57 (ddd, J= 8.5, 1.4, 0.7 Hz, 1H), 8.20 (ddd, J= 8.2, 1.6, 0.7 Hz, 1H), 7.97 – 7.83 (m, 2H).

The synthetic route of 875-66-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE; YIN, Hang Hubert; ZHANG, Shuting; HU, Zhenyi; (114 pag.)WO2019/89648; (2019); A1;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

New learning discoveries about 875-66-1

The synthetic route of 875-66-1 has been constantly updated, and we look forward to future research findings.

875-66-1, Cinnolin-4-ol is a cinnoline compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

a. 4-Chloro-8-nitroquinoline (6a). This intermediate was prepared from 4-chloroquinoline (obtained by treating 4-hydroxyquinoline with [POC13] as [ DESCRIBED BY GOULEY, R. W., ET AL. , J. AMER. CHEM. SOC., 1947, 69, 303-306.4-] Chloroquinoline (10.0 g, 61.3 mmol) was added in small portions to sulfuric acid (45 mL) taking care to maintain the temperature at or below 15 C. Then the solution was cooled and maintained at-15 C during the addition of fuming nitric acid (9 mL). The mixture was allowed to warm to room temperature and stirred for an additional 3 hours. The reaction mix was poured on ice and basified (pH 9) with NH40H. The resulting precipitate was filtered, washed well with water, dried, and recrystallized from methanol to provide 7.5 g of 6a, in 59 % yield; m. p. = [128-129 C] (lit. m. p. = [129-130 C) ; IH] NMR [(CDC13)] [8] 7.67 (d, [1H,] J=4. 5), 7.75 (dd, 1H, J=8. 6 [HZ,] J=7. 6), 8.10 (dd, 1H, J=7. 6, J=1. 3), 8. 48 (dd, 1H,. [J=8.] [6,] J=1.3), 8.94 (d, 1H, J=4. 5); [13C] NMR [(CDC13)] [8] 123.0, 124.4, 126.5, 127.5, 128.3, 140.6, 143.2, 148.7, 152.1.

The synthetic route of 875-66-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; RUTGERS, THE STATE UNIVERSITY; LAVOIE, Edmond, J.; RUCHELMAN, Alexander, L.; LIU, Leroy, F.; WO2004/14906; (2004); A2;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

The origin of a common compound about 875-66-1

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,875-66-1,Cinnolin-4-ol,its application will become more common.

A common heterocyclic compound, 875-66-1,Cinnolin-4-ol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 875-66-1

Example 20: Synthesis of 1- [4- (5-FLUORO-2-METHOXYPHENYL)-2-HYDROXY-4-METHYL-2- TRIFLUOROMETHYLPENTYL]-LH-CINNOLIN-4-ONE To a suspension of 2- [2- (5-fluoro-2-methoxyphenyl)-2-methylpropyl]-2-trifluoromethyloxirane (216 mg) and cinnolin-4-ol (V. G. Chapoulaud et AL., Tetrahedron, 2000,56, pp. 5499-5507) (216 mg) in anhydrous ethanol (1.2 ML) was added sodium ethoxide (21 wt. % solution in ethanol, 276 PL). After heating at 85C for 16 hours, the reaction mixture was diluted with ethyl acetate, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by preparative TLC (eluted with 40% ethyl acetate-hexanes) to give the title compound as a pale yellow solid (26 mg), m. p. 122C-123C.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,875-66-1,Cinnolin-4-ol,its application will become more common.

Reference£º
Patent; BOEHRINGER INGELHEIM PHARMACEUTICALS, INC.; WO2004/63163; (2004); A1;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics